
Exercice 1

Un arbre cylindrique de longueur ℓ , de section uniforme à moment d'inertie polaire I_p et de module de glissement G est soumis à ses extrémités à deux moments de torsion M_t opposés. Par la méthode des éléments finis (approche locale), déterminer les rotations $\varphi(0)$ et $\varphi(\ell)$ aux extrémités de l'arbre en discrétisant la structure en deux éléments finis à deux nœuds.

Exercice 2

Par la méthode des éléments finis (approche locale), déterminer une solution approchée de la forme faible de la conduction de chaleur en régime stationnaire pour un domaine unidimensionnel de longueur ℓ

$$T \in \mathcal{U} : \int_0^\ell \kappa(\mathrm{d}T/\mathrm{d}x)(\mathrm{d}\delta T/\mathrm{d}x)\,\mathrm{d}x = \int_0^{\ell/2} q\delta T\mathrm{d}x \qquad \forall \delta T \in \mathcal{V}$$

avec les classes de fonctions ${\mathcal V}$ et ${\mathcal V}$

$$\mathcal{U} = \mathcal{V} = \{ w(x) \mid w(x) \in H^1(]0, \ell[); w(0) = w(\ell) = 0 \}$$

où les variables T et δT sont les températures réelle et virtuelle et où la grandeur κ désigne le coefficient de conductibilité thermique que l'on choisit constant, alors que w dénote indifféremment T ou δT . Le flux de chaleur q est admis constant pour $0 < x < \ell/2$ et nul pour $\ell/2 < x < \ell$. Choisir un réseau composé de quatre éléments finis de longueur identique $\ell/4$. Comparer la solution trouvée avec la distribution thermique exacte.